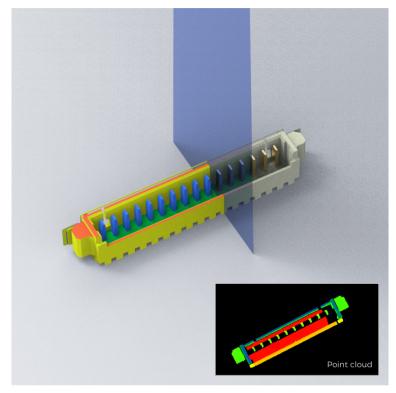
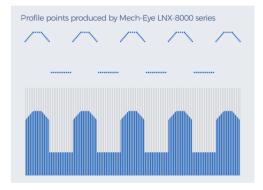


High-Speed 3D Laser Profilers


Mech-Eye LNX-8000 Series

For inline inspection applications in automotive, EV battery, electronics, and other industries.

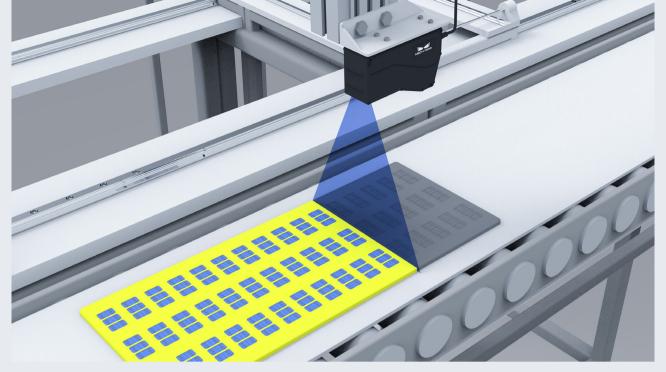
4K+ Resolution Laser Profiling


to see every detail and feature

Mech-Eye LNX-8000 series is the new-generation 3D laser profiler with an astounding 4K+ resolution. Leveraging advanced optical design and Al algorithms, the Mech-Eye LNX-8000 produces 4,096 data points per profile for high-resolution 3D inspection of targets (dents, gaps, edges, etc.), even for microscopic features.

Mech-Eye LNX-8030 scans pins.

When the X-axis scanning range is constant, the LNX-8000 series generates more profile points than other line profilers.


Micron Resolution and Precision to inspect microscopic defects

When maintaining a constant scanning range along the X-axis, the Mech-Eye LNX-8000 series outperforms other profilers by providing a higher density of profile points. It achieves an impressive Z repeatability at 0.2 μ m^[1] and \pm 0.02% of F.S. linearity^[1]. These features enable precise inspection, even on the tiniest details and most complex surfaces.

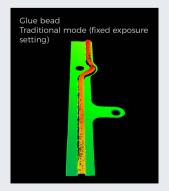
Comparison with a typical laser profiler							
X-axis (width)			Z-axis (height)				
	typical product	LNX-8030		typical product	LNX-8030		
Measurement range	35 mm (RD) ^[2]	35 mm (RD) ^[2]	Repeatability	0.5 µm	0.2 μm		
Data points per profile	3200	4096	Linearity	± 0.03% of F.S.	± 0.02% of F.S.		
Profile data interval	12.5 μm	9 μm					

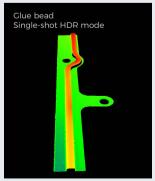
^[1] Applicable to Mech-Eve LNX-803

^[2] Reference distance

Mech-Eye LNX-8080 scans SIM card slots. It can scan multiple parts in a single capture, boosting production efficiency by over 50% and significantly increasing production capacity.

Ultra-High Scan Rates and Large FOVs to scan large parts and edge details at a fast speed


Do more with fast scan rates and large measurement ranges.


- Achieve scan rates of 3.3 kHz (scan of the full field of view) and up to 15 kHz (scan of the complete X measurement range). Generate high-resolution 3D data at an accelerated pace.
- The X measurement range reaches 430 mm^[1] and the Z measurement range reaches 305 mm^[1]. Scan large objects in one exposure or multiple small parts simultaneously, significantly boosting inspection speed and keeping up with the production pace.

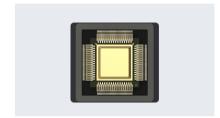
Single-Shot HDR

to scan dark and reflective surfaces in a single exposure

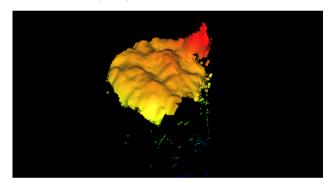
The Mech-Eye LNX-8000 series, equipped with a single-shot HDR function, makes it possible to scan both dark (low reflectivity) and reflective (high reflectivity) surfaces in one exposure and creates complete 3D point clouds.

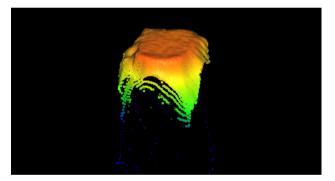
^[1] Applicable to Mech-Eye LNX-8300

Advanced Optical Design and Algorithms

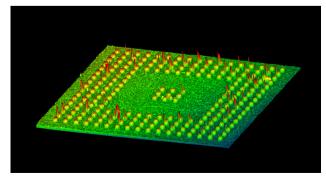

to measure almost any material and surface

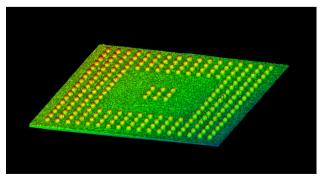
The Mech-Eye LNX-8000 series features an advanced optical design, incorporating a laser with a cylindrical lens, a large-aperture Schmidt lens, and an imaging sensor with a resolution of up to 10MP. These features enable more precise imaging of any surface and intricate detail.


- Our self-developed laser, equipped with a uniquely designed cylindrical lens, emits light with a wide field of view and a narrow fan angle, minimizing blind spots effectively.
- A large-aperture Schmidt lens enhances received light intensity fourfold compared to conventional lenses. Its high-resolution, lowdistortion design significantly improves imaging quality.
- With up to 10MP resolution, the CMOS provides 4,096 data points per profile, enabling precise measurement of even the most intricate features.



▼ Point clouds: pin tip


The point cloud generated by a conventional 3D line laser profiler has visible noisy data, like spikes, that can affect measurement accuracy.

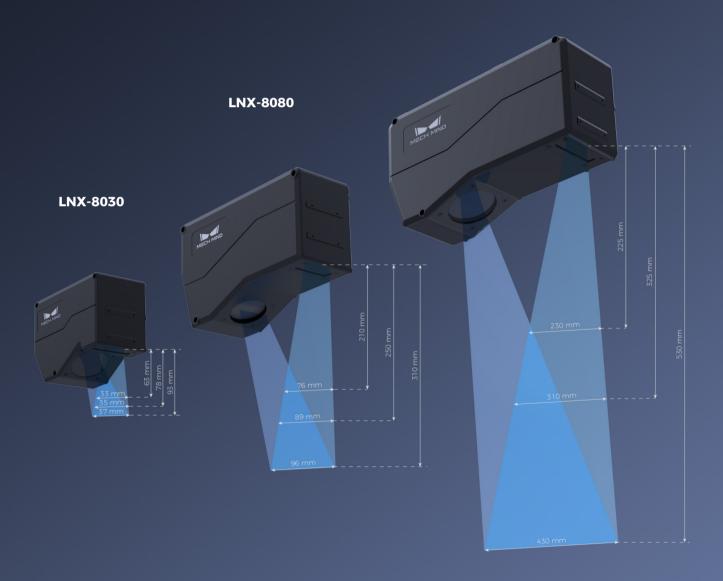

The Mech-Eye LNX-8000 series adopts high-resolution CMOS and advanced optical designs, allowing precise imaging of even the smallest pin tips.

With our robust algorithms, the Mech-Eye LNX-8000 series excels in handling interreflection, dead zones, and other challenging situations. Its enhanced resistance to interference ensures precise and reliable measurement results.

▼ Point clouds: BGA

Traditional algorithms struggle with interference caused by interreflection. This results in point cloud outliers that affect measurement accuracy.

Robust anti-interreflection algorithms eliminate outliers and deliver high-quality point clouds, ensuring reliable measurement results.


Choose from a lineup tailored to your application needs

The Mech-Eye LNX series introduces multiple models to enhance quality control and process optimization across diverse industries.

Work with Mech-MSR 3D Measurement and Inspection Software and Mech-DLK Deep Learning Software to help you rapidly deploy measurement/ inspection applications

Develop your applications using multi-language SDK, including C++ and C#; Easily connect to HALCON and other third-party vision software through the native API or GenICam/ GigE interface

LNX-8300

Applications in the Consumer Electronics

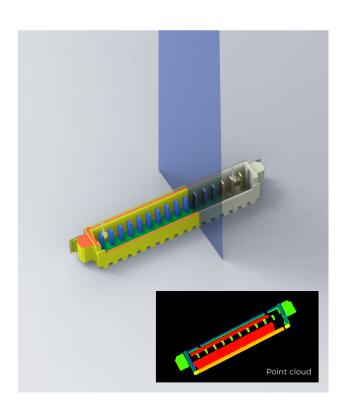
Solder Joint Inspection

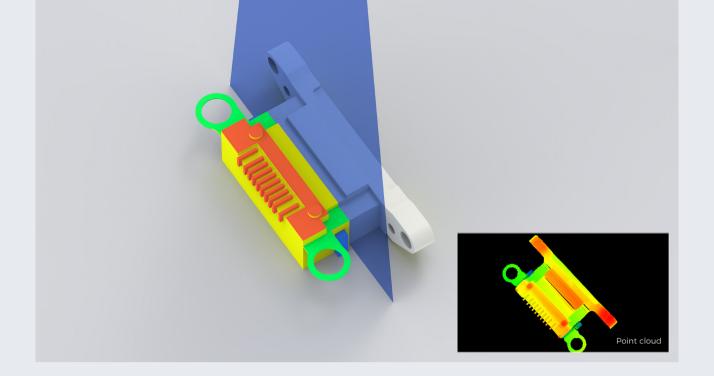
▶ The challenge

- Solder joints are tiny, typically ranging from tens to hundreds of micrometers in height.
- Solder joints have reflective surfaces, making precise
 3D scanning and inspection more challenging.
- The shapes of the joints are highly varied and irregular, including spherical, conical, cylindrical, and other forms.

▶ The advantage

- Generate high-resolution 3D data (4,096 data points per profile and Z repeatability down to 0.2 μm) of each solder joint.
- Advanced algorithms effectively handle the reflection and generate detailed and high-density 3D data.
- Mech-DLK deep learning software strategically used to segment and recognize different sold joint types.


Pin Height Measurement


▶ The challenge

- Pins are difficult to scan and measure because they are tiny, highly reflective, and come in varying heights and materials.
- Noise, such as spikes, in the 3D data regularly appears between pins.
- Pins of slightly incorrect height can result in short circuits and poor contact.

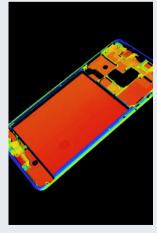
▶ The advantage

- Generate high-resolution 3D data (4,096 data points per profile) of each tiny, highly reflective pin.
- Advanced optical design and algorithms effectively handle different types of noise, such as dead zones and spikes.
- Micron resolution to measure the pin's height precisely and accurately.

Card Edge Connector Coplanarity Inspection

▶ The challenge

- The light reflected from the metal coating impacts the inspection result.
- Complex surfaces and tiny features (e.g., grooves, protrusions, and patterns) pose challenges to the imaging.
- A moving production line requires quick and consistent inspection.


The advantage

- Create a high-resolution image by scanning each reflective pin in high density (4,096 points/profile).
- Measure targets at ultrahigh scanning speeds and produce stable profiles for efficient and consistent inspection.
- Advanced imaging algorithms handle dead zones and reflection for accurate results.

More Applications

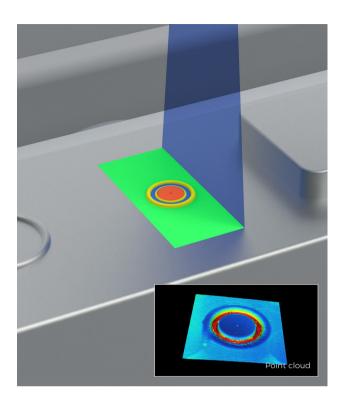
SIM card holder height measurement

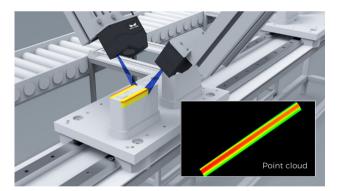
Cellphone midplate inspection

Screw height measurement

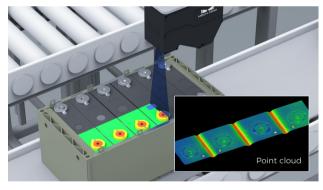
Shielding frame inspection

Applications in the EV Battery

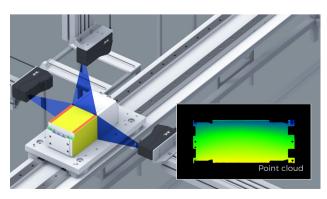

Sealing Pin Welding Inspection


▶ The challenge

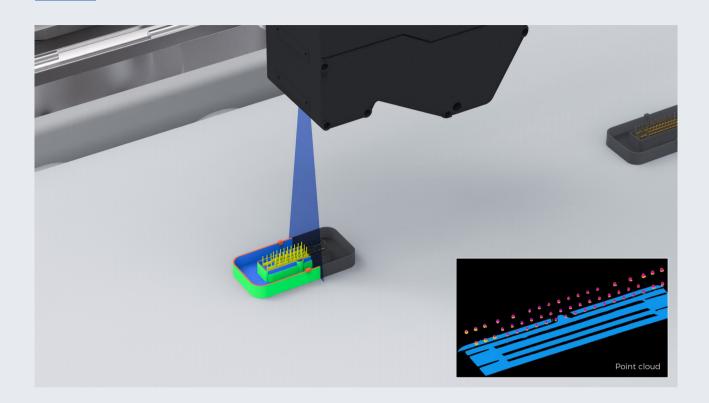
- Tiny pin welds require high inspection accuracy.
- Some defects occur on the pin welds, such as burns, dents, pinholes, broken and missing welds.
- Fast and stable scanning is required in the process to avoid line shutdowns and maximize yields.


The advantage

- High-speed and high-quality imaging of tiny welds for accurate and efficient inspection.
- Pixel-level defect segmentation and inspection with robust algorithms.
- Stable and durable operation for efficient production and high productivity.


Cap welding inspection

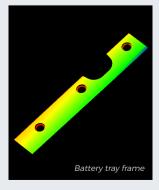
Busbar welding inspection



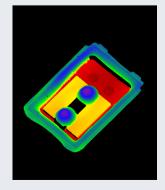
Height measurement of battery cell

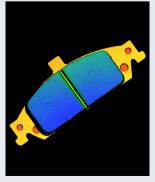
Dimensional measurement of battery module

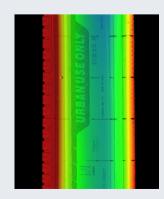
Applications in the Automotive Industry


Connector Pin Inspection

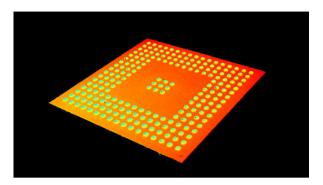
▶ The challenge


- Pins of slightly incorrect height can result in voltage drops and intermittency.
- The tiny pin inspection places high demands on accuracy and resolution.
- Noise resulting from interreflection between pins impacts the image quality.
- Intricate geometries of pins are easy to create curves in the 3D point clouds.


▶ The advantage

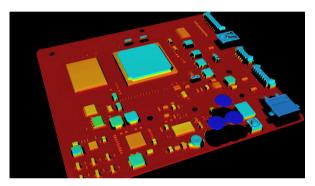

- Produce high-density and high-resolution profiles and detailed 3D point clouds of tiny pins.
- The robust algorithms effectively deal with the noisy data resulting from reflection.
- Advanced algorithms and Al-powered tools precisely measure the height of the pins and separate the curved point clouds.

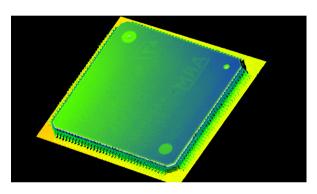
EV battery tray inspection

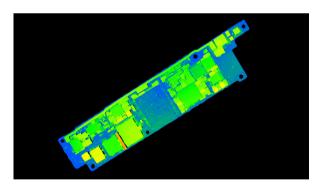


Tire DOT code reading

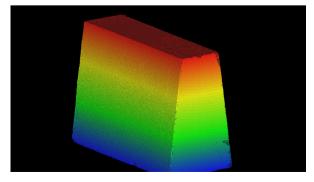
Applications

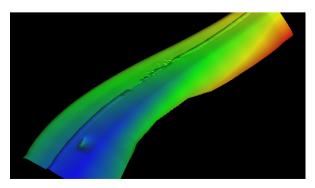

in semiconductor, pharmaceutical, metal and more industries


BGA inspection (height, coplanarity, etc.)

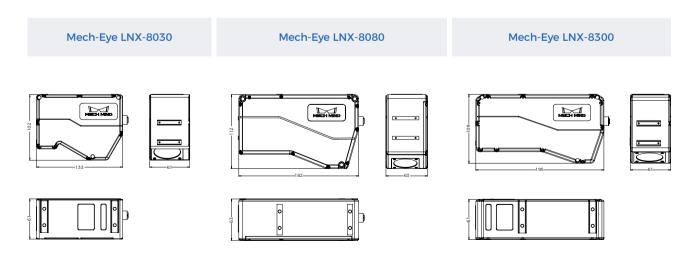

PCB solder paste inspection

Height measurement of PCB-mounted parts


Chip welding inspection


Part presence/absence detection

Character recognition on cast surfaces


Refractory brick dimensional measurement

Welding seam inspection

Mech-Eye LNX-8000 Series and Key Specs

Specification	LNX-8030 LNX-8080		LNX-8300		
Data points/profile	4096				
Reference distance (RD)	78 mm	250 mm	325 mm		
Measurement range Z	30 mm	100 mm	305 mm		
Measurement range X (near/RD/far)	33/35/37 mm	76/89/96 mm	230/310/430 mm		
Resolution X	9 µm	23.5 μm	105 µm		
Repeatability Z	0.2 µm	0.5 µm	2 μm		
Linearity Z	± 0.02% of F.S.				
Scan rate	3.3-15 kHz				
Dimensions	133 × 61 × 102 mm	182 × 63 × 112 mm	195 × 61 × 109 mm		
Weight	0.9 kg	1.2 kg	1.2 kg		
Laser	Blue (405 nm, Class 2)	Blue (405 nm, Class 2M)	Blue (405 nm, Class 2M)		
Lens inclination	30°	22°	19°		
Input voltage	24V DC				
Max. input power	48W (25W for sensor head)				
Communication interface	Gigabit Ethernet				
Encoder input	Single-ended and differential encoders supported				
Operating temperature	0-45°C				
Safety and EMC	CE/FCC/VCCI/KC/ISED/NRTL				
IP rating	IP67				
Cooling	Passive				

Unit: mm

3D VISION & AI FOR ROBOTS AND MORE

Get the most from Mech-Mind's 3D vision - get in touch with us!

Website: www.mech-mind.com
E-mail (business): info@mech-mind.net
E-mail (PR & marketing): marketing@mech-mind.net

Learning guidance to deploy your vision application STEP BY STEP, please visit

Documentation: docs.mech-mind.net
Online community: community.mech-mind.com